Revista ADM.MADE, Vol. 16, No 2 (2012)

Tamanho da fonte:  Menor  Médio  Maior

Análise Comparativa de Modelos de Previsão: Aplicação do Model Confidence Set para Preços de Alumínio

João Bosco Barroso de Castro, Alessandra de Ávila Montini

Resumo


Commodities primárias, tais como metais, petróleo e de agricultura, constituem matérias-primas fundamentais para a economia mundial. Dentre os metais, destaca-se o alumínio, usado em uma ampla gama de indústrias, e que detém o maior volume de contratos da London Metal Exchange (LME). Como o preço não está diretamente relacionado aos custos de produção, em momentos de volatilidade ou de choques econômicos, o impacto na indústria global de alumínio é significativo. Previsão de preços do alumínio é fundamental, portanto, para definição de política industrial, bem como para produtores e consumidores. Dadas as limitações dos métodos tradicionais para seleção de modelos de previsão, que não corrigem efeitos de data snooping,este trabalho aplicou o Model Confidence Set (MCS), para determinar o melhor conjunto de modelos de previsão de preços de alumínio. O MCS corrige efeitos de data snooping e introduz o conceito de nível descritivo para comparação múltipla de modelos. Foram desenvolvidos três modelos: ARFIMA, estrutural e mudança de regime markoviana, utilizando a base de dados de janeiro de 1980 a abril de 2012. Para cada modelo, foram geradas 60 previsões fora da amostra por meio de rolling regressions para estimativas de um, três, seis, 12 e 24 meses à frente. O modelo ARFIMA apresentou melhor acuracidade de previsão para três, seis, 12 e 24 meses à frente. Para previsão um mês à frente, o modelo de mudança de regime apresentou melhor acuracidade, enquanto o modelo ARFIMA proporcionou resultados equiparáveis ao de mudança de regime para um nível descritivo determinado pelo MCS de 0,10. Dessa forma, obtém-se um intervalo de acuracidade de previsão dos modelos por meio do MCS, o que não é obtido por meio dos métodos tradicionais de avaliação de previsões.


Texto Completo: WORD

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.

Revista ADM.MADE - ISSN 2237-5139

Mestrado em Administração e Desenvolvimento Empresarial/Universidade Estácio de Sá

Av. Presidente Vargas, 642, 22o. andar – Centro

Rio de Janeiro - RJ - CEP: 20071-001

Tel.: 21-22069743